189 research outputs found

    Nonparametric maximum likelihood approach to multiple change-point problems

    Get PDF
    In multiple change-point problems, different data segments often follow different distributions, for which the changes may occur in the mean, scale or the entire distribution from one segment to another. Without the need to know the number of change-points in advance, we propose a nonparametric maximum likelihood approach to detecting multiple change-points. Our method does not impose any parametric assumption on the underlying distributions of the data sequence, which is thus suitable for detection of any changes in the distributions. The number of change-points is determined by the Bayesian information criterion and the locations of the change-points can be estimated via the dynamic programming algorithm and the use of the intrinsic order structure of the likelihood function. Under some mild conditions, we show that the new method provides consistent estimation with an optimal rate. We also suggest a prescreening procedure to exclude most of the irrelevant points prior to the implementation of the nonparametric likelihood method. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of estimation accuracy and computation time.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1210 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian phase I/II adaptively randomized oncology trials with combined drugs

    Get PDF
    We propose a new integrated phase I/II trial design to identify the most efficacious dose combination that also satisfies certain safety requirements for drug-combination trials. We first take a Bayesian copula-type model for dose finding in phase I. After identifying a set of admissible doses, we immediately move the entire set forward to phase II. We propose a novel adaptive randomization scheme to favor assigning patients to more efficacious dose-combination arms. Our adaptive randomization scheme takes into account both the point estimate and variability of efficacy. By using a moving reference to compare the relative efficacy among treatment arms, our method achieves a high resolution to distinguish different arms. We also consider groupwise adaptive randomization when efficacy is late-onset. We conduct extensive simulation studies to examine the operating characteristics of the proposed design, and illustrate our method using a phase I/II melanoma clinical trial.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS433 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    OR-NeRF: Object Removing from 3D Scenes Guided by Multiview Segmentation with Neural Radiance Fields

    Full text link
    The emergence of Neural Radiance Fields (NeRF) for novel view synthesis has increased interest in 3D scene editing. An essential task in editing is removing objects from a scene while ensuring visual reasonability and multiview consistency. However, current methods face challenges such as time-consuming object labeling, limited capability to remove specific targets, and compromised rendering quality after removal. This paper proposes a novel object-removing pipeline, named OR-NeRF, that can remove objects from 3D scenes with user-given points or text prompts on a single view, achieving better performance in less time than previous works. Our method spreads user annotations to all views through 3D geometry and sparse correspondence, ensuring 3D consistency with less processing burden. Then recent 2D segmentation model Segment-Anything (SAM) is applied to predict masks, and a 2D inpainting model is used to generate color supervision. Finally, our algorithm applies depth supervision and perceptual loss to maintain consistency in geometry and appearance after object removal. Experimental results demonstrate that our method achieves better editing quality with less time than previous works, considering both quality and quantity.Comment: project site: https://ornerf.github.io/ (codes available
    • …
    corecore